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Abstract
Recent results on solutions to the equation of motion of the cubic fermionic
string field theory and an equivalence of nonpolynomial and cubic string field
theory are discussed. To have the possibility of dealing with both GSO(+) and
GSO(−) sectors in the uniform way, a matrix formulation for the NS fermionic

SFT is used. In constructions of analytical solutions to open-string field theories
truncated pure gauge configurations parametrized by wedge states play an
essential role. The matrix form of this parametrization for NS fermionic SFT
is presented. Using the cubic open superstring field theory as an example we
demonstrate explicitly that for the large parameter of the perturbation expansion
these truncated pure gauge configurations give divergent contributions to the
equations of motion on the subspace of the wedge states. The perturbation
expansion is corrected by adding extra terms that are just those necessary for
the equation of motion contracted with the solution itself to be satisfied.

PACS number: 11.25.Sq

1. Introduction

It is well known that string field theories (SFT) describe an infinite number of local fields. Just
for this reason finding nontrivial solutions to classical SFT is a rather nontrivial problem. This
is a reason why the Schnabl construction of the tachyon solution in the Witten open bosonic
SFT [1] attracts a lot of attention [2]. It turns out that the tachyon solution is closely related
to pure gauge solutions. More precisely, Schnabl’s solution is the regularization of a singular
limit of a pure gauge configuration [2, 7]. The presence of pure gauge solutions in the bosonic
SFT is related to the Chern–Simons form of the Witten cubic action. The Schnabl solution is
distinguished by the fact that it describes a true vacuum of SFT, i.e. a vacuum on which the
Sen conjecture is realized. Since the pure gauge solutions do not shift the vacuum energy, the
correct shift of the vacuum energy by the Schnabl solution is rather a nontrivial fact, and its
deep origin is still unclear to us.
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The purpose of this paper is to present recent results concerning the generalization of the
Schnabl solution to the fermionic case.

It is natural to expect that a solution being a singular limit of a pure gauge solution also
exists in the cubic super SFT (SSFT) [3, 5]. But for the superstring case, there is no a priori
reason to deal with the Sen conjecture, since the perturbative vacuum is stable (there is no
tachyon). However, a nontrivial (not pure gauge) solution to the SSFT equation of motion
(EOM) does exist [15]. The physical meaning of this solution is still unclear. It may happen
that it is related to a spontaneous supersymmetry breaking (compare with [4]).

There is also a nonpolynomial formulation of the SSFT [12]. A solution of the equation of
motion in the nonpolynomial SSFT has been obtained in [16, 17]. This solution became clear
after the realization of an explicit relation between solutions to the cubic and nonpolynomial
SSFTs [14]. These theories include only the GSO(+) sector of the NS string. There are
also two versions of the NS fermionic SFT that includes both GSO(+) and GSO(−) sectors,
cubic [8] and nonpolynomial [12]. Just the NS fermionic SFT with two sectors is used to
describe non-BPS branes. The Sen conjecture has been checked by the level truncation for
the nonpolynomial and cubic cases in [11] and [8], respectively. A solution to the equation
of motion of the cubic SFT describing the NS string with both GSO(+) and GSO(−) sectors
has been constructed in [9]. On this solution the Sen conjectures take place.

To make the construction of the solution [9] more clear it is useful to incorporate a matrix
version of NS fermionic SFT with GSO(+) and GSO(−) [10]. In the matrix formulation,
an explicit relation between solutions to the cubic and nonpolynomial theories becomes more
clear, and it gives an explicit formula for solutions to BSZ theory [11] via solutions [9] to
ABKM theory [8].

The Schnabl solution � consists of two pieces and is defined by the limit,

� = lim
N→∞

[
N∑

n=0

ψ ′
n − ψN

]
, (1)

where the states ψ ′
n defined for any real n � 0 are made of the wedge state [18–20].

Generally, in our calculations, in particular in numerical calculations, we are able to check
the equation of motion in a weak sense contracted with a vector C:

〈C,Q� + � � �〉 = 0. (2)

A weak validity of the equation of motion depends on the domain of contracting vectors
C. It was shown [2] that the string field � in (1) solves the equation of motion of Witten’s SFT
contracted with any state C in the Fock space with a finite number of string excitations. In the
course of this calculation ψN piece does not contribute.

On the other hand to check the Sen conjecture, one has to use the equation of motion
contracted with a solution itself. The ψN piece in (1) is necessary for the equation of motion
contracted with the solution itself to be satisfied [7, 14].

The first piece in the Schnabl constructions (1) is related to a perturbative expansion over
a parameter λ of a pure gauge configuration:

�N(λ) =
N∑

n=0

λn+1ψ ′
n. (3)

It is worth stressing that �∞(1) fails to be a solution of the equation of motion when contracting
with a wide class of states that are the building blocks of the solution, namely with the wedge
states ψn:

〈ψm,Q�∞(1) + �∞(1) � �∞(1)〉 �= 0, (4)
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and this is an origin why the pure gauge configurations �∞(1) do not solve the equation of
motion contracted with these configurations themselves. We demonstrate this fact explicitly
for the cubic open SSFT.

It is possible to correct the perturbation expansion �∞(1) by adding extra terms ψN .
These are just the terms that have been used previously to provide that the equation of motion
contracted with the solution itself be satisfied [15].

The paper is organized as follows.
In section 2 a matrix formulation for the NS fermionic SFT is presented.
In section 3 perturbative parameterizations of special pure gauge configurations are

presented. These pure gauge configurations are used in the Erler SSFT solution [15] and
in the tachyon fermion solution [9].

In section 4 we demonstrate that the λ = 1 limit of these pure gauge solutions is, in
fact, a singular point and we use a simple prescription to correct divergences. We show that
this prescription gives the same answer as the requirement of the validity of the equations of
motion contracted with the solution itself.

In section 5, we contribute to a discussion [14] of the classical equivalence of the
nonpolynomial theory of Berkovits, Sen and Zwiebach [11], and the cubic theory of Belov,
Koshelev and two of us [8].

2. Cubic SFT for fermion string with GSO(+) and GSO(−) sectors in matrix notations

The action for covariant SSFT with GSO(+) and GSO(−) sectors was proposed in [8]:

S[�+,�−] = − 1

g2
0

[
1

2
〈Y−2�+,Q�+〉 +

1

3
〈Y−2�+,�+,�+〉

+
1

2
〈Y−2�−,Q�−〉 − 〈Y−2�+,�−,�−〉

]
. (5)

The equations of motion read (� stands for Witten’s string field product)

Q�+ + �+ � �+ − �− � �− = 0, (6)

Q�− + �+ � �− − �− � �+ = 0. (7)

The string fields �+ and �− have definite and opposite Grassman parity, to be fixed below.
The parity |�| leads to the Leibniz rule,

Q(� � �) = Q� � � + (−)|�|� � Q�. (8)

It is useful to introduce matrix notations [10] by tensoric string fields and operators with
appropriate 2 × 2 matrices. In this notations, the action (5) reads

S[�̂] = − 1

g2
0

[
1

2
〈Ŷ−2�̂, Q̂�̂〉 +

1

3
〈Ŷ−2�̂, �̂, �̂〉

]
, (9)

and the string field �̂ is given by [10]

�̂ = �+ ⊗ σ3 + �− ⊗ iσ2, (10)

and

Q̂ = Q ⊗ σ3, Ŷ−2 = Y−2 ⊗ σ3, (11)

where σi are Pauli matrices.
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The parity assignment and σi algebra lead to the Leibnitz rule:

Q̂(�̂ � �̂) = (Q̂�̂) � �̂ + (−)|�̂|�̂ � (Q̂�̂), (12)

where

|�̂| ≡ |�+|. (13)

The equations of motion (6) in the matrix notations read

Q̂�̂ + �̂ � �̂ = 0. (14)

If �̂ is a nontrivial solution of (14), then it has to be Grassman odd, |�̂| = 1. The pure gauge
solution of (14) is

�̂ = �̂−1 � Q̂�̂ = −Q̂�̂ � �̂−1, (15)

for �̂ to be odd �̂ has to be even |�̂| = 0, and it has an expansion

�̂ = �+ ⊗ I + �− ⊗ σ1. (16)

3. Perturbative pure gauge solution

3.1. Perturbative expansion in matrix notations

In this section, we find a solution of the equation of motion (14). We find the solution as a
series in some parameter λ, i.e., let us suppose �̂ to be a series in some λ,

�̂λ =
∞∑

n=0

λn+1φ̂n, (17)

and put this expansion in equation of motion (14). In the first order in λ we have

Q̂φ̂0 = 0. (18)

We choose a solution to (18) as

φ̂0 = Q̂φ̂, (19)

where

φ̂ = φ+ ⊗ I + φ− ⊗ σ1, (20)

φ+ and φ− are the components of the gauge field φ̂, and they belong to GSO(+) and GSO(−)

sectors, respectively. The Grassman parities of φ+ and φ− are opposite.
In the second order in λ, we have

Q̂φ̂1 + φ̂0 � φ̂0 = 0. (21)

For φ̂0 in the form (19) we get (also we used the Leibnitz rule (12) for Q̂)

Q̂φ̂1 + Q̂φ̂ � Q̂φ̂ = Q̂(̂φ1 − Q̂φ̂ � φ̂) = 0, (22)

due to |̂φ| = 0 we get minus. The solution of equation (21) is

φ̂1 = Q̂φ̂ � φ̂. (23)

In this scheme, we get

φ̂n = Q̂φ̂ � φ̂n, (24)

then �̂ is

�̂λ =
∞∑

n=0

λn+1Q̂φ̂ � φ̂n = λQ̂φ̂
1

1 − λφ̂
. (25)
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The perturbative solution has the pure gauge form (15). Indeed, let us introduce �̂ = 1 − λφ̂,
then (25) is

�̂λ = −Q̂(1 − λφ̂) � (1 − λφ̂)−1 = −Q̂�̂ � �̂−1. (26)

This expression can be written through φ± as

�̂λ = (Qφ+ ⊗ σ3 + Qφ− ⊗ iσ2)
1

(1 − λφ+)2 − λ2φ2−
((1 − λφ+) ⊗ I + λφ− ⊗ σ1). (27)

Picking out GSO(+) and GSO(−) sectors we get

�λ
+ = λ

2
Q(φ+ + φ−)

1

1 − λ(φ+ + φ−)
+

λ

2
Q(φ+ − φ−)

1

1 − λ(φ+ − φ−)
, (28)

�λ
− = λ

2
Q(φ+ + φ−)

1

1 − λ(φ+ + φ−)
− λ

2
Q(φ+ − φ−)

1

1 − λ(φ+ − φ−)
. (29)

This result agrees with [9].

3.2. Initial data and perturbative expansion in components

Here we choose φ+ and φ− in the following form [9]:

φ+ = BL
1 c1|0〉, (30)

φ− = BL
1 γ 1

2
|0〉. (31)

Then �λ
+ and �λ

− will have the form

�λ
+ =

∞∑
n=0

λn+1φ′
n, (32)

φ′
0 = ( − KR

1 c1 − BR
1

(
c0c1 + γ 2

1/2

))|0〉, (33)

φ′
n = c1|0〉 � |n〉 � KL

1 BL
1 c1|0〉 + γ 1

2
|0〉 � |n〉 � KL

1 BL
1 γ 1

2
|0〉, n > 0, (34)

�λ
− =

∞∑
n=0

λn+1ψ ′
n, (35)

ψ ′
0 =

(
−KR

1 γ 1
2

+ BR
1

(
c1γ− 1

2
− 1

2
c0γ 1

2

))
|0〉, (36)

ψ ′
n = γ 1

2
|0〉 � |n〉 � KL

1 BL
1 c1|0〉 + c1|0〉 � |n〉 � KL

1 BL
1 γ 1

2
|0〉, n > 0. (37)

4. The λ = 1 limit

In this section, we examine the λ = 1 limit of the pure gauge solutions (27). It is known that
this is a singular point for the pure gauge solution [2, 7, 16].

We consider for the transparency a pure GSO(+) sector and the equation of motion for
the string field �+ is

Q�+ + �+ � �+ = 0. (38)
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We start with the pure gauge solution of (38) given by formulae (32)–(37) with λ < 1 and
initial date φ− = 0. The explicit form of this solution is

�+(λ) =
∞∑

n=0

λn+1ϕ′
n + λ�, |λ| < 1, (39)

where

� = BL
1 γ 2

1/2|0〉,
ϕ′

0 = − (
KR

1 c1 + BR
1 c0c1

) |0〉, (40)

ϕ′
n = c1|0〉 � |n〉 � KL

1 BL
1 c1|0〉n > 0.

Let us take just a partial sum of the infinite series (39),

�N
+ (λ) =

N−1∑
n=0

λn+1ϕ′
n + λ�, (41)

and check the validity of equation of motion (38) in a weak sense on the states ϕm
4:〈〈

ϕm,Q�N
+ (λ) + �N

+ (λ) � �N
+ (λ)

〉〉
(42)

ϕm = 2

π
c1|0〉 � |m〉 � BL

1 c1|0〉. (43)

We use correlators [15] collected in the table below:

〈〈ϕm,Qϕn〉〉 = −m + n + 2

π2
,

〈〈ϕm,Q�〉〉 = 1

π2
,

〈〈�,Q�〉〉 = 0, (44)

〈〈ϕk, ϕm � ϕn〉〉 = 0,

〈〈�, ϕm � ϕn〉〉 = m + n + 3

2π2
,

〈〈�,� � ϕn〉〉 = 0,

〈〈�,� � �〉〉 = 0.

We get 〈〈
ϕm,Q�N

+ (λ) + �N
+ (λ) � �N

+ (λ)
〉〉 = λN+1

π2
. (45)

Taking the limit N → ∞ for λ < 1 we have for an arbitrary m:

〈〈ϕm,Q�+(λ) + �+(λ) � �+(λ)〉〉 = 0, (46)

in other words for λ < 1 the field �+(λ) solves the equation of motion when contracted with
states from the subspase L({ϕm}) spanned by ϕm. This fact is natural for the solution obtained
by the iteration procedure (see section 3). It is interesting to note that if we consider the
validity of the equation of motion on the subspace spanned by ϕ′

m we get that on this subspace
the equation of motion is satisfied for any λ :

〈〈ϕ′
m,Q�+(λ) + �+(λ) � �+(λ)〉〉 = 0. (47)

4 Here 〈〈...〉〉 = 〈Y−2...〉.
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From equation (45) one sees that for λ = 1 the string field �+ ≡ �+(1) does not solve
equation of motion (38) in the week sense on L({ϕm}) :

〈�+(1), (Q�+(1) + �+(1) � �+(1)〉 �= 0. (48)

Let us recall that in the case of boson string to ensure the equation of motion in the sense
(48) extra terms have been added to �N

bos , and these extra terms provide the validity of the Sen
conjecture [2, 7].

Following Erler [15] we can try to add to �N
+ ≡ ∑N−1

n=0 ϕ′
n + � two extra terms,

�N
+ (c1, c2) = �N

+ + c1ϕN + c2ϕ
′
N, (49)

and find c1 and c2 from the requirement of the validity of the equation of motion in the weak
sense, 〈〈

ϕm,Q�N
+ (c1, c2) + �N

+ (c1, c2) � �N
+ (c1, c2)

〉〉 = 0. (50)

Simple calculations based on (44) show that c1 = −1 and c2 is arbitrary. Indeed,〈〈
ϕm,Q�N

+ (c1, c2)
〉〉 = −N − 1

π2
− c1

m + N + 2

π2
− c2

1

π2
,〈〈

ϕm,�N
+ (c1, c2) � �N

+ (c1, c2)
〉〉 = N

π2
+ c1

m + N + 3

π2
+ c2

1

π2
,

(51)

and we see that〈〈
ϕm,Q�N

+ (c1, c2) + �N
+ (c1, c2) � �N

+ (c1, c2)
〉〉

= − N − 1

π2
− c1

m + N + 2

π2
− c2

1

π2
+

N

π2
+ c1

m + N + 3

π2
+ c2

1

π2

= 1

π2
+ c1

1

π2
(52)

is equal to zero for c1 = −1.
Let us add to our subspace L({ϕm}) a vector � and consider the requirement of the validity

of the equations of motion also on this vector:〈〈
�,Q�N

+ (−1, c2) + �N
+ (−1, c2) � �N

+ (−1, c2)
〉〉 = 0. (53)

We have〈〈
�,Q�N

+ (−1, c2) + �N
+ (−1, c2) � �N

+ (−1, c2)
〉〉 = − 1

π2
+

3

2π2
− c2

1

π2
, (54)

and we see that the LHS of (54) is zero for c2 = 1/2.
It is interesting to note that c1 = −1, c2 = 1/2 provide the validity of the equation of

motion being contracted with �N
+ (−1, 1/2):〈〈

�N
+ (−1, 1/2),Q�N

+ (−1, 1/2) + �N
+ (−1, 1/2) � �N

+ (−1, 1/2)
〉〉 = 0. (55)

Therefore, we see that just the requirement of the validity of the equation of motion ‘terms
by terms’ at the point λ = 1 forces one to add two extra terms to �N

+ . A necessity of these
extra terms has been advocated in [15] to provide the Sen conjecture.

5. Equivalence of BSZ and ABKM theories

The action for cubic NS string theory with GSO(−) sector is presented in section 2. In the
nonpolynomial theory, the GSO(−) sector can be added in the following way [11]. The field
is an element of a 2 × 2 matrix of the form

Ĝ = G+ ⊗ I + G− ⊗ σ1. (56)

7
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An equation of motion has the following form:

η̂0(Ĝ
−1Q̂Ĝ) = 0, (57)

where η̂0 ≡ η ⊗ σ3. From a condition Ĝ−1Ĝ = I , we have

G+G− = G−G+. (58)

Let A be a set of matrix solutions of equation of motion (14) and B is a set of solutions
(57).

Let us define a map g of B to A ADD fk [14]:

g : Ĝ → �̂ ≡ g(Ĝ) = Ĝ−1Q̂Ĝ. (59)

This map is correctly defined due to (57). This expression in the components has the form

�+ = G−1
+ QG+ +

G−
G2

+

QG−,

�− = G−1
+ QG− +

G−
G2

+

QG+.

(60)

In order to �̂ = g(Ĝ) be a solution of equation of motion (14), it is necessary and sufficient
to implement the Leibnitz rule for the operator Q̂ (12). Let us note that G+ is even and G− is
odd, i.e. G+ and G− have the different parities.

Let us define a map h of A in B as [14]:

h : �̂ → Ĝ ≡ h(�̂) = eP̂ �̂ . (61)

If P̂ 2 = 0 we have

eP̂ �̂ = 1 + P̂ �̂, (62)

here 1 is an identity state |I 〉 ⊗ I with respect to �, and P̂ ≡ P ⊗ σ3, where P is the nilpotent
operator with respect to � defined in [14],

(P�1) � (P�2) = 0, (63)

and its anticommutator with Q is the identity,

{Q,P (z)} = 1. (64)

In the components (61) reads

G+ = 1 + P�+ = eP�+ , G− = P�−. (65)

Ĝ−1 has the form

Ĝ−1 = (1 − P�+) ⊗ I − P�− ⊗ σ1 = G−1
+ ⊗ I − G− ⊗ σ1 = e−P̂ �̂ . (66)

The maps g and h are connected nontrivially. Let us consider a composition g ◦ h:˜̂� = (g ◦ h)(�̂) = g(h(�̂)) = (1 − P̂ �̂)Q̂(1 + P̂ �̂) = (1 − P̂ �̂)Q̂P̂ �̂

= (1 − P̂ �̂)(1 − P̂ Q̂)�̂ = (1 − P̂ Q̂ − P̂ �̂)�̂ = �̂ − P̂ (Q̂�̂ + �̂2) = �̂, (67)

here we used (64), then we used the equation of motion for �̂ and the nilpotency of P̂ under
the star product (63). So we have proved that g ◦ h = Id and g(B) = A i.e. an arbitrary
classical solution in cubic theory can be represent in the pure gauge form.

Now let us consider a composition h ◦ g:˜̂G = (h ◦ g)(Ĝ) = h(g(Ĝ)) = eP̂ Ĝ−1Q̂Ĝ = 1 + P̂ Ĝ−1Q̂Ĝ = 1 − P̂ Q̂Ĝ−1 · Ĝ

= 1 − (1 − Q̂P̂ )Ĝ−1 · Ĝ = 1 − 1 + Q̂P̂ Ĝ−1 · Ĝ = Q̂P̂ Ĝ−1 · Ĝ. (68)

8
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Figure 1. Maps h and g. Here hats are omitted for simplicity.

For an arbitrary Ĝ ∈ B introduces the following parametrization [14]:

Ĝ = 1

1 − �̂
. (69)

The element �̂ = g(Ĝ) ∈ A takes the form

�̂ = Ĝ−1Q̂Ĝ = −Q̂Ĝ−1Ĝ = Q̂�̂
1

1 − �̂
. (70)

Here we used that Ĝ is even, the Leibnitz rule is used, and at the same time it is important that
the parities of G+ and G− are opposite and σ2I = Iσ2, σ3σ1 = −σ1σ3. Also we used that P
changes the parity of field.

Then we use the parametrization (69) for (68):˜̂G = Q̂P̂ Ĝ−1 · Ĝ = Q̂P̂ (1 − �̂) · 1

1 − �̂
= 1

1 − �̂
− Q̂P̂ �̂

1

1 − �̂
= (1 − Q̂(P̂ �̂))Ĝ,

(71)

where we use

Q̂P̂ I = I. (72)

Let us rewrite (71) as˜̂G = e−Q̂(P̂ �̂)Ĝ. (73)

It is the gauge transformation˜̂G = e−Q̂�̂Q̂ Ĝ êη0�̂η̂ , (74)

with a gauge parameter �̂Q̂ = P̂ �̂, �̂η̂ = 0.

So (h ◦ g)(Ĝ) belongs to a gauge orbit OĜ = {̂̃G : ̂̃G = e−Q̂�̂Q̂ Ĝ} of the initial field Ĝ.
In the components (73) reads

G̃+ = e−Q�+G+ − Q�−G−,

G̃− = e−Q�+G− − Q�−G+,
(75)

�̂Q = �+ ⊗ σ3 + �− ⊗ iσ2, (76)

where �+ = P�+,�− = P�−.
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In terms of gauge orbits the maps g and h can be describe more clearly.
Let �̂ be an arbitrary field of A and Ĝ = h(�̂). Let us consider an image of the orbit

O�̂ = {˜̂� : ˜̂� = e−�̂(�̂ + Q̂) e�̂} by the map h: h(O�̂ ) = {˜̂G : ˜̂G = h(˜̂�)}. The
straightforward calculation gives˜̂G = 1 + P̂ ˜̂� = 1 + P̂ ( e−�̂(�̂ + Q̂) e�̂) = 1 + P̂ (−Q̂ e−�̂ + e−�̂�̂) e�̂

= (Q̂(P e−�̂) + P̂ e−�̂�̂) e�̂ = Q̂(P̂ e−�̂)(1 + P̂ �̂) e�̂ = Q̂(P̂ e−Q̂P̂ �̂)Ĝ e�̂

= e−Q̂P̂ �̂Ĝ e�̂ = e−Q̂P̂ �̂Ĝ êη0 ξ̂ �̂, (77)

i.e. h(O�̂ ) is the suborbit of the field Ĝ = h(�̂), due to a special choice of the gauge parameter
�̂Q̂, �̂η̂ or h(O�̂ ) ⊂ OĜ.

Let Ĝ be an arbitrary field of B and �̂ = g(Ĝ). Let us consider an image of the orbit
OĜ by the map g: g(OĜ) = {˜̂� = g(˜̂G) : ˜̂G ∈ OĜ}:˜̂� = ˜̂G−1

Q̂˜̂G = e−η̂0�̂η̂ Ĝ−1 eQ̂�̂Q̂Q̂( e−Q̂�̂Q̂ Ĝ êη0�̂η̂ )

= e−η̂0�̂η̂ Ĝ−1((Q̂Ĝ) êη0�̂η̂ + ĜQ̂ êη0�̂η̂ ) = e−η̂0�̂η̂ (�̂ + Q̂) êη0�̂η̂ , (78)

since �̂η̂ is arbitrary, then g(OĜ) = O�̂ . Note that, if h(�̂ ′) ∈ Oh(�̂), then �̂ ′ ∈ O�̂ . Indeed,
by virtue of g ◦ h = Id it is possible to rewrite �̂ ′ = g(h(�̂ ′)), and since g(OĜ) = O�̂ then
h(�̂ ′) ∈ Oh(�̂).

So we can see that the maps g and h could be constrict to the maps orbits:

h : O�̂ → OĜ, g : OĜ → O�̂ .

At the same time, the image O�̂ in OĜ is the suborbit (1). The image OĜ = {˜̂G : ˜̂G =
e−Q̂�̂Q̂ Ĝ êη0�̂η̂} is all orbit O�̂ . All elements OĜ with different �̂Q̂ are mapped in one

element O�̂ (see (78)). Bounded on h(O�̂ ) mapping g becomes invertible: h ◦ g|h(O�̂)
= Id.

The composition h ◦ g gives in the orbit OĜ a special section (68).

6. Conclusion

In this paper, a singular limit of the pure gauge solution is discussed. We propose a simple
prescription to deal with a singularity problem and show that it gives the same answer as the
requirement of the validity of equations of motion contracted with the solutions.

The equivalence of the solutions of the equation of motion in the cubic fermionic string
field theory [8] and that of nonpolynomial string field theory [11] including the GSO(-) sector
is discussed using the matrix representations of both theories. The singularity problem shows
once again that a formal gauge equivalence of two theories needs a rather delicate study.

Acknowledgments

The work is supported in part by RFBR grant 08-01-00798 and NS-795.2008.1. The work of
IA is supported in part by INTAS grant 03-51-6346.

References

[1] Witten E 1986 Interacting field theory of open superstrings Nucl. Phys. B 276 291
[2] Schnabl M 2006 Analytic solution for tachyon condensation in open string field theory Adv. Theor. Math. Phys.

10 433–501 (arXiv: hep-th/0511286)
[3] Arefeva I Y, Medvedev P B and Zubarev A P 1990 New representation for string field solves the consistence

problem for open superstring field Nucl. Phys. B 341 464–98

10

http://dx.doi.org/10.1016/0550-3213(86)90298-1
http://www.arxiv.org/abs/hep-th/0511286
http://dx.doi.org/10.1016/0550-3213(90)90189-K


J. Phys. A: Math. Theor. 42 (2009) 304001 I Ya Aref’eva et al

[4] Arefeva I Y, Medvedev P B and Zubarev A P 1991 Nonperturbative vacuum for superstring field theory and
supersymmetry breaking Mod. Phys. Lett. A 6 949

[5] Preitschopf C R, Thorn C B and Yost S A 1990 Superstring field theory Nucl. Phys. B 337 363–433
[6] Arefeva I Y, Belov D M, Giryavets A A, Koshelev A S and Medvedev P B 2001 Noncommutative field theories

and (super)string field theories arXiv: hep-th/0111208
[7] Okawa Y 2006 Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field

theory J. High Energy Phys. JHEP04(2006)055 (arXiv: hep-th/0603159)
[8] Arefeva I Y, Belov D M, Koshelev A S and Medvedev P B 2002 Gauge invariance and tachyon condensation

in cubic superstring field theory Nucl. Phys. B 638 21 (arXiv: hep-th/0107197)
[9] Aref’eva I Y, Gorbachev R V and Medvedev P B 2008 Tachyon solution in cubic Neveu–Schwarz string field

theory arXiv: 0804.2017 [hep-th]
[10] Arefeva I Y, Belov D M and Giryavets A A 2002 Construction of the vacuum string field theory on a non-BPS

brane J. High Energy Phys. JHEP09(2002)050 (arXiv: hep-th/0201197)
[11] Berkovits N, Sen A and Zwiebach B 2000 Tachyon condensation in superstring field theory Nucl. Phys. B

587 147–78 (arXiv: hep-th/0002211)
[12] Berkovits N 1995 Super-Poincare invariant superstring field theory Nucl. Phys. B 450 90–102 (arXiv:

hep-th/9503099)
[13] Friedan D, Martinec E and Shenker S 1986 Conformal invariance, supersymmetry and string theory Nucl. Phys.

B 271 93
[14] Fuchs E and Kroyter M 2008 On the classical equivalence of superstring field theories arXiv: 0805.4386 [hep-th]
[15] Erler T 2008 Tachyon vacuum in cubic superstring field theory J. High Energy Phys. JHEP01(2008)013 (arXiv:

0707.4591 [hep-th])
[16] Erler T 2007 Marginal solutions for the superstring J. High Energy Phys. JHEP07(2007)050 (arXiv: 0704.0930

[hep-th])
[17] Okawa Y 2007 Analytic solutions for marginal deformations in open superstring field theory J. High Energy

Phys. JHEP09(2007)084 (arXiv: 0704.0936 [hep-th])
Okawa Y 2007 Real analytic solutions for marginal deformations in open superstring field theory J. High Energy

Phys. JHEP09(2007)082 (arXiv: 0704.3612 [hep-th])
Kiermaier M and Okawa Y 2007 General marginal deformations in open superstring field theory arXiv:

0708.3394 [hep-th]
[18] Rastelli L and Zwiebach B 2001 Tachyon potentials, star products and universality J. High Energy Phys.

JHEP09(2001)038 (arXiv: hep-th/0006240)
[19] Rastelli L, Sen A and Zwiebach B 2001 Boundary CFT construction of D-branes in vacuum string field theory

J. High Energy Phys. JHEP11(2001)045 (arXiv: hep-th/0105168)
[20] Schnabl M 2003 Wedge states in string field theory J. High Energy Phys. JHEP01(2003)004 (arXiv:

hep-th/0201095)

11

http://dx.doi.org/10.1142/S0217732391000993
http://dx.doi.org/10.1016/0550-3213(90)90276-J
http://www.arxiv.org/abs/hep-th/0111208
http://www.arxiv.org/abs/hep-th/0603159
http://dx.doi.org/10.1016/S0550-3213(02)00473-X
http://www.arxiv.org/abs/hep-th/0107197
http://www.arxiv.org/abs/0804.2017
http://www.arxiv.org/abs/hep-th/0201197
http://dx.doi.org/10.1016/S0550-3213(00)00501-0
http://www.arxiv.org/abs/hep-th/0002211
http://dx.doi.org/10.1016/0550-3213(95)00259-U
http://www.arxiv.org/abs/hep-th/9503099
http://www.arxiv.org/abs/0805.4386
http://www.arxiv.org/abs/0707.4591
http://www.arxiv.org/abs/0704.0930
http://www.arxiv.org/abs/0704.0936
http://www.arxiv.org/abs/0704.3612
http://www.arxiv.org/abs/0708.3394
http://www.arxiv.org/abs/hep-th/0006240
http://www.arxiv.org/abs/hep-th/0105168
http://www.arxiv.org/abs/hep-th/0201095

	1. Introduction
	2. Cubic SFT for fermion string with
	3. Perturbative pure gauge solution
	3.1. Perturbative expansion in matrix notations
	3.2. Initial data and perturbative expansion in components

	4. The
	5. Equivalence of BSZ and ABKM theories
	6. Conclusion
	Acknowledgments
	References

